

End-to-End Learning of User Equilibrium with Implicit Neural Networks

Zhichen Liu¹ Yafeng Yin¹ Fan Bai^b Donald Grimm^b

¹University of Michigan ²General Motors Research and Development

Classic Transportation Network Modeling Diagram

The selection of behavior model is **based on modelers' belief** rather than being the outcome of a calibration process against empirical flow data.

We aim to transform the network equilibrium modeling paradigm via an "end-to-end" framework that directly learns travel choice preferences and the equilibrium state from empirical data.

TRBAM-23-02639

Pre-print available at SSRN!

Proposed "End-to-end" Learning Framework

Example: Consider context features x, origin-destination demands q and observed link flows \bar{v} are available for three months, where $q^{[1]}$ represents the demand of the first month.

Approximate travelers' cost function $c_{\theta}(h, x)$ with neural networks, where h is path flow and θ is neural network parameters.

Encapsulate the user equilibrium conditions with variational inequalities or a implicit layer, i.e.,

$$c_{\theta}\big(h^{[m]},x\big)^T \left(h^{[m]*}-h^{[m]}\right) \geq 0, \forall h \in \mathcal{H}^{[m]}$$
 where $\mathcal{H}^{[m]}$ is the feasible region of path flows.

Train the neural networks by minimizing the differences between the computed equilibrium flows v^* and flow observations \bar{v} .

Learning challenges

- How to design neural networks so that equilibrium exists?
- How to simultaneously solve a batch of variational inequalities?
- How to differentiate through the equilibrium solutions?

3

Case study

Sioux Falls Network. Consider a non-link-additive cost function.

Table 1. Mean Absolute Percentage Error of link flow predictions

Model	Trained and tested on the same road network	Trained and tested on different road networks
UE	15.5	14.2
SUE-logit	12.7	15.7
End-to-end	6.0	6.4

Inaccurately assuming a <u>logit-based Stochastic User Equilibrium</u> behavior model can cause bias in parameter estimation and mislead the flow prediction.