

End-to-End Learning of User Equilibrium: Expressivity, Generalization, and Optimization

Zhichen Liu, Yafeng Yin University of Michigan

1 Research Question

Can neural networks help planners learn a "better" traffic assignment model from real-world data?

6 Main Takeaway

- Utilizing neural networks' representation power, our end-to-end framework learns s a range of "well-defined" user equilibria from observed traffic states, maintaining controlled errors.
- Auto-differentiation boosts scalability and ensures local convergence in training.
- Using single-step network loading instead of user equilibrium during training may compromise performance.

2 End-to-End Framework

Consider planners observe weather and flows for three days.

Approximate the travel cost function $F_{\theta}(x, y)$ with neural networks.

Backpropagate $\nabla_{\theta} y^*$

- Encapsulate user equilibrium with an implicit layer and solve a batch of variational inequalities. $\langle F_{\theta}(x, y^*), y y^* \rangle \geqslant 0, \quad \forall y \in \mathcal{Y}$
- Auto-differentiate through the equilibrium states to learn parameter θ to minimize fitting error/

4 Framework analysis

Total error $\Delta \leq$	Δ_1	Δ_2	Δ_3
# Parameters 1	1	1	=
# Samples 1	=	1	↑
# Equilibrium		_	↓
approximation 1			

Gase Study Chigago sketch

Model	Inverse demand function	Link performance function	Number of Parameter	Link time prediction error (%)
Functional	Context-dependent exponential function	Context- dependent BPR	4	2.93
Linear	Linear function	Standard BPR	6	12.6
End-to-end	Residual neural network	Physics-informed neural network	232	9.5

